Hierarchical Li4Ti5O12/TiO2 composite tubes with regular structural imperfection for lithium ion storage

نویسندگان

  • Yan-Mei Jiang
  • Kai-Xue Wang
  • Hao-Jie Zhang
  • Jing-Feng Wang
  • Jie-Sheng Chen
چکیده

Hierarchical Li4Ti5O12/TiO2 tubes composed of ultrathin nanoflakes have been successfully fabricated via the calcination of the hydrothermal product of a porous amorphous TiO2 precursor and lithium hydroxide monohydrate. The hierarchical tubes are characterized by powder X-ray diffraction, nitrogen adsorption/desorption, scanning electron microscopy and transmission electron microscopy techniques. These nanoflakes exhibit a quite complex submicroscopic structure with regular structural imperfection, including a huge number of grain boundaries and dislocations. The lithium ion storage property of these tubes is evaluated by galvanostatic discharge/charge experiment. The product shows initial discharge capacities of 420, 225, and 160 mAh g(-1) at 0.01, 0.1, and 1.0 A g(-1), respectively. After 100 cycles, the discharge capacity is 139 mAh g(-1) at 1.0 A g(-1) with a capacity retention of 87%, demonstrating good high-rate performance and good cycleability. The high electrochemical performance is attributed to unique structure and morphology of the tubes. The regular structural imperfection existed in the nanoflakes also benefit to lithium ion storage property of these tubes. The hierarchical Li4Ti5O12/TiO2 tubes are a promising anode material for lithium-ion batteries with high power and energy densities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional coherent titania-mesoporous carbon nanocomposite and its lithium-ion storage properties.

Mesoporous, micro/nanosized TiO2/C composites with uniformly dispersed TiO2 nanoparticles embedded in a carbon matrix have been rationally designed and synthesized. In brief, TiO2 precursor was infiltrated into the channels of surface-oxidized mesoporous carbon (CMK-3) by means of electrostatic interaction, followed by in situ hydrolysis and growth of TiO2 nanocrystallites, resulting in ultrafi...

متن کامل

Facile synthesis of nano-Li4 Ti5O12 for high-rate Li-ion battery anodes

One of the most promising anode materials for Li-ion batteries, Li4Ti5O12, has attracted attention because it is a zero-strain Li insertion host having a stable insertion potential. In this study, we suggest two different synthetic processes to prepare Li4Ti5O12 using anatase TiO2 nanoprecursors. TiO2 powders, which have extraordinarily large surface areas of more than 250 m2 g-1, were initiall...

متن کامل

Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries.

Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers (Li4Ti5O12@C hierarchical nanofibers) were synthesized using a scalable synthesis technique involving electrospinning and annealing in an Ar atmosphere for the purpose of using them as anode materials for high-capacity and high-rate-capability Li-ion and Na-ion batteries. The Li4Ti5O12@C hierarchical nanofibers exhibited high stable dis...

متن کامل

Hierarchical TiO2/C nanocomposite monoliths with a robust scaffolding architecture, mesopore-macropore network and TiO2-C heterostructure for high-performance lithium ion batteries.

Engineering hierarchical structures of electrode materials is a powerful strategy for optimizing the electrochemical performance of an anode material for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical TiO2/C nanocomposite monoliths by mediated mineralization and carbonization using bacterial cellulose (BC) as a scaffolding template as well as a carbon source. Ti...

متن کامل

Novel peapoded Li4Ti5O12 nanoparticles for high-rate and ultralong-life rechargeable lithium ion batteries at room and lower temperatures.

In this paper, a novel peapod-like Li4Ti5O12-C composite architecture with high conductivity is firstly designed and synthesized to be used as anode materials for lithium-ion batteries. In the synthesis, Na2Ti3O7 nanotubes act as precursors and sacrificial templates, and glucose molecules serve as the green carbon source, thus the peapod-like Li4Ti5O12-C composite can be fabricated by a facile ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013